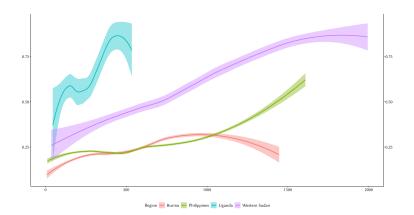
Markets after the jihads Economic integration in French West Africa, 1914-1954

Tom Westland

Wageningen University and Research

A preliminary VICI note

Comparing degree of market integration between Southeast Asia and Africa in the colonial period.


A preliminary VICI note

- Comparing degree of market integration between Southeast Asia and Africa in the colonial period.
- The price of distance: how much does a 1% increase in bilateral distance between two towns increase the average price gap (measured as $\pi_{i,j} = |(\log \frac{p_i}{p_j})|$) in Africa, and how much in Southeast Asia?

A preliminary VICI note

- Comparing degree of market integration between Southeast Asia and Africa in the colonial period.
- The price of distance: how much does a 1% increase in bilateral distance between two towns increase the average price gap (measured as $\pi_{i,j} = |(\log \frac{p_i}{p_j})|$) in Africa, and how much in Southeast Asia?
- Estimate $\pi=\beta_0+\beta_1\log({\rm distance})+\epsilon$ and take $\hat{\beta_1}$ as our estimate of the price of distance

In a graph

The price of distance in interwar SE Asia & Africa

	$\hat{eta_1}$	Source/nature of prices
Burma	0.020 (0.011)	Rice prices, by district, from Season and Crop reports.
Philippin	` ,	Rice prices, by province, Statistical Yearbooks of the Philippines; Report of the Agricultural
Uganda	,	Department Maize prices from Frankema, De Haas, Joshipura and Westland, East Africa Food
Western Sudan	0.303 (0.063)	Price Database Millet prices, from Westland 2025 (this presentation)

Very, very little. (Exceptions: Boshoff and Fourie (2017) for South Africa; Tadei, Aslanidis and Martinez (2024)).

 Market integration is one of the most important parts of Smithian growth - specialisation and commercialisation

Very, very little. (Exceptions: Boshoff and Fourie (2017) for South Africa; Tadei, Aslanidis and Martinez (2024)).

- Market integration is one of the most important parts of Smithian growth - specialisation and commercialisation
- Sometimes has been argued that 'Smithian growth' was occurring in West Africa prior to colonial rule (Sokoto Caliphate and other jihadi states)

Very, very little. (Exceptions: Boshoff and Fourie (2017) for South Africa; Tadei, Aslanidis and Martinez (2024)).

- Market integration is one of the most important parts of Smithian growth - specialisation and commercialisation
- Sometimes has been argued that 'Smithian growth' was occurring in West Africa prior to colonial rule (Sokoto Caliphate and other jihadi states)
- Equally, colonial rule has often been seen as the catalyst for Smithian growth - declining transport costs with infrastructure investment (railways, roads)

Very, very little. (Exceptions: Boshoff and Fourie (2017) for South Africa; Tadei, Aslanidis and Martinez (2024)).

- Market integration is one of the most important parts of Smithian growth - specialisation and commercialisation
- Sometimes has been argued that 'Smithian growth' was occurring in West Africa prior to colonial rule (Sokoto Caliphate and other jihadi states)
- Equally, colonial rule has often been seen as the catalyst for Smithian growth - declining transport costs with infrastructure investment (railways, roads)
- unlike for much of colonial Asia, colonial governments generally did not systematically collect and publish prices of staple foodstuffs like millet, rice, maize, cassava and yams outside capital cities (for British colonies) we have price series for *capital cities* but rarely anywhere else.

What this paper does

Shows that there was **substantial convergence** in millet and rice (but not salt) prices across the period 1914-1954 in French West Africa

What this paper does

- Shows that there was **substantial convergence** in millet and rice (but not salt) prices across the period 1914-1954 in French West Africa
- ➤ Shows that **falling transport costs** account for a significant proportion of this convergence, but not all of it

What this paper does

- ➤ Shows that there was **substantial convergence** in millet and rice (but not salt) prices across the period 1914-1954 in French West Africa
- ➤ Shows that **falling transport costs** account for a significant proportion of this convergence, but not all of it
- Shows that precolonial state formation sometimes had a significant impact on price integration—though only for some products and in within some states

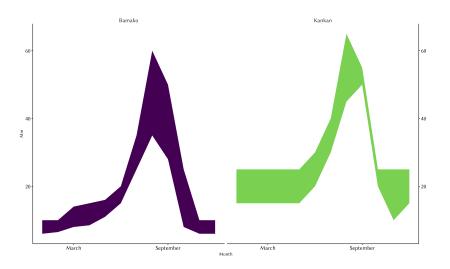
Some brief historical background

- Some brief historical background
- ▶ An introduction to the West Africa Transport Cost database and the French West Africa Food Price Database (a subset of the broader VICI West Africa Food Price Database)

- Some brief historical background
- An introduction to the West Africa Transport Cost database and the French West Africa Food Price Database (a subset of the broader VICI West Africa Food Price Database)
- Price convergence: the evidence

- Some brief historical background
- An introduction to the West Africa Transport Cost database and the French West Africa Food Price Database (a subset of the broader VICI West Africa Food Price Database)
- Price convergence: the evidence
- ▶ The contribution of transport costs

- Some brief historical background
- ▶ An introduction to the West Africa Transport Cost database and the French West Africa Food Price Database (a subset of the broader VICI West Africa Food Price Database)
- Price convergence: the evidence
- ▶ The contribution of transport costs
- ▶ The contribution of precolonial states


As the French do let's start with: "le milieu physique": the Western Sudan

- As the French do let's start with: "le milieu physique": the Western Sudan
- Arid tropics 9 months of the year (or thereabouts) no rain

- As the French do let's start with: "le milieu physique": the Western Sudan
- Arid tropics 9 months of the year (or thereabouts) no rain
- A mix of cash crops (cotton; groundnuts; some rubber; sisal)

- As the French do let's start with: "le milieu physique": the Western Sudan
- Arid tropics 9 months of the year (or thereabouts) no rain
- A mix of cash crops (cotton; groundnuts; some rubber; sisal)
- ▶ This has major implications for the structure of staple markets
 - thin (unpredictable surpluses), poorly integrated (high transport costs without water) and highly seasonal

Seasonality & thinness - some evidence from early 20th century

More on markets

'millet is hardly purchased at all in normal times; the natives live on rice and fonio. Daily trade in millet does not exceed 300 kilograms. But in the rainy season, when all reserves are more or less exhausted, millet is sold regardless of how small the quantity. Africans come running from villages four or five days' walk away at the news of the arrival of a shipment.' (L'agriculture pratique des pays chauds')

► Western Sudan sees two major statebuilding projects in the 'long' 19th century/20th:

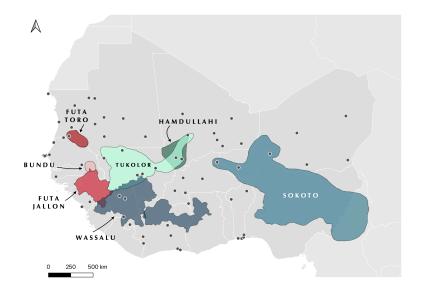
- ▶ Western Sudan sees two major statebuilding projects in the 'long' 19th century/20th:
 - Islamic revivalist movements from late 1700s, establishing among other states the *Sokoto Caliphate* in 1804 in what is now Northern Nigeria; the *Tukolor Empire* of Sheikh Umar Tall in the middle Niger River region in the mid 19th century. Also the *Wassoulou Empire* of the 'Napoleon of West Africa', Samory Touré

- ► Western Sudan sees two major statebuilding projects in the 'long' 19th century/20th:
 - Islamic revivalist movements from late 1700s, establishing among other states the *Sokoto Caliphate* in 1804 in what is now Northern Nigeria; the *Tukolor Empire* of Sheikh Umar Tall in the middle Niger River region in the mid 19th century. Also the *Wassoulou Empire* of the 'Napoleon of West Africa', Samory Touré
 - European colonisation from coastal trading posts, 'Scramble for Africa' in the late 19th century. Western Sudan, aside from Northern Nigeria, is entirely colonised by the French

- ➤ Western Sudan sees two major statebuilding projects in the 'long' 19th century/20th:
 - Islamic revivalist movements from late 1700s, establishing among other states the *Sokoto Caliphate* in 1804 in what is now Northern Nigeria; the *Tukolor Empire* of Sheikh Umar Tall in the middle Niger River region in the mid 19th century. Also the *Wassoulou Empire* of the 'Napoleon of West Africa', Samory Touré
 - European colonisation from coastal trading posts, 'Scramble for Africa' in the late 19th century. Western Sudan, aside from Northern Nigeria, is entirely colonised by the French
 - Major infrastructure investments first in rail and then in roads, heavily relying on forced labour for construction.

- ► Western Sudan sees two major statebuilding projects in the 'long' 19th century/20th:
 - Islamic revivalist movements from late 1700s, establishing among other states the *Sokoto Caliphate* in 1804 in what is now Northern Nigeria; the *Tukolor Empire* of Sheikh Umar Tall in the middle Niger River region in the mid 19th century. Also the *Wassoulou Empire* of the 'Napoleon of West Africa', Samory Touré
 - European colonisation from coastal trading posts, 'Scramble for Africa' in the late 19th century. Western Sudan, aside from Northern Nigeria, is entirely colonised by the French
 - Major infrastructure investments first in rail and then in roads, heavily relying on forced labour for construction.
 - What was the impact of this on staple markets?

For French Africa, scarcity is even more acute than for British Africa: no regular statistical collection of prices until late 1940s/1950s (independence in 1960)


- For French Africa, scarcity is even more acute than for British Africa: no regular statistical collection of prices until late 1940s/1950s (independence in 1960)
- I exploit the military provisioning system publishes estimates of the cost price of constituent foodstuffs in African rations by location from c.1915-1953, some years missing. Published in the *Journaux officiels* so that military knew how much cash to give African soldiers to buy their own food

- ➤ For French Africa, scarcity is even more acute than for British Africa: no regular statistical collection of prices until late 1940s/1950s (independence in 1960)
- I exploit the military provisioning system publishes estimates of the cost price of constituent foodstuffs in African rations by location from c.1915-1953, some years missing. Published in the Journaux officiels so that military knew how much cash to give African soldiers to buy their own food
- Also the price at which military stores could sell if they had surplus supplies

- For French Africa, scarcity is even more acute than for British Africa: no regular statistical collection of prices until late 1940s/1950s (independence in 1960)
- I exploit the military provisioning system publishes estimates of the cost price of constituent foodstuffs in African rations by location from c.1915-1953, some years missing. Published in the *Journaux officiels* so that military knew how much cash to give African soldiers to buy their own food
- Also the price at which military stores could sell if they had surplus supplies
- Cost price (*prix de revient*) are **not** retail prices but they track them in theory and in to a reasonable extent in practice

- ➤ For French Africa, scarcity is even more acute than for British Africa: no regular statistical collection of prices until late 1940s/1950s (independence in 1960)
- I exploit the military provisioning system publishes estimates of the cost price of constituent foodstuffs in African rations by location from c.1915-1953, some years missing. Published in the *Journaux officiels* so that military knew how much cash to give African soldiers to buy their own food
- Also the price at which military stores could sell if they had surplus supplies
- Cost price (*prix de revient*) are **not** retail prices but they track them in theory and in to a reasonable extent in practice
- Panel of *millet, rice and salt prices* from 1916-1955 across French West Africa

States and prices

Data II: transport costs

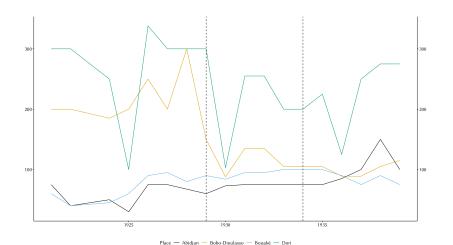
No existing *comprehensive* dataset of transport prices

- No existing *comprehensive* dataset of transport prices
 - ▶ But some observations from previous work on cash crop economy

- No existing *comprehensive* dataset of transport prices
 - But some observations from previous work on cash crop economy
 - See e.g. Jedwab and Moradi (2016), Tadei (2020)

- No existing *comprehensive* dataset of transport prices
 - But some observations from previous work on cash crop economy
 - See e.g. Jedwab and Moradi (2016), Tadei (2020)
- Newly compiled set of nominal transport prices (French francs per kilometric ton or per passenger kilometre) from primary and secondary sources

- No existing *comprehensive* dataset of transport prices
 - But some observations from previous work on cash crop economy
 - See e.g. Jedwab and Moradi (2016), Tadei (2020)
- Newly compiled set of nominal transport prices (French francs per kilometric ton or per passenger kilometre) from primary and secondary sources
 - Around 900 observations and growing, covering rail, automotive, animal, waterborne and human transport modes


- No existing *comprehensive* dataset of transport prices
 - But some observations from previous work on cash crop economy
 - See e.g. Jedwab and Moradi (2016), Tadei (2020)
- Newly compiled set of nominal transport prices (French francs per kilometric ton or per passenger kilometre) from primary and secondary sources
 - Around 900 observations and growing, covering rail, automotive, animal, waterborne and human transport modes
- Create a network representation of transport links in FWA (rail, road, water) and calculate least cost paths between towns in the price dataset.

Was there convergence?

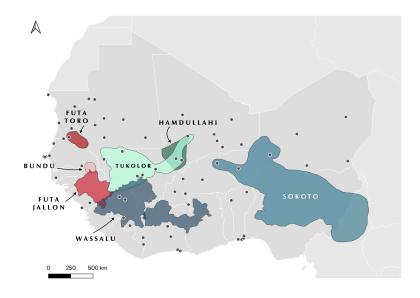
Estimate σ -convergence (regress coefficient of variation on a time trend)

Sample	Millet	Rice	Salt
Full sample: River and rail connected only:	-0.166*** -0.241***	-0.188 -0.230*	0.00.
Not connected to river or rail:	-0.209***	-0.059.	-0.059

The impact of transport costs - graphically

The impact of transport costs

	Millet	Rice	Salt
All town pairs			
TC	0.420***	0.295***	0.466***
	(0.020)	(0.016)	(0.014)
Num.Obs.	24338	13469	21962
R2	0.603	0.421	0.638
Trading pairs only			
TC.	0.323***	0.184***	0.394***
	(0.055)	(0.027)	(0.032)
Num.Obs.	2986	2194	3058
R2	0.597	0.458	0.674


The impact of precolonial states

▶ I calculate correlation coefficients for town pairs, and adapting the strategy of Fenske and Kala (2021), estimate

$$\begin{split} \rho^x_{i,j} = \beta_0 + \beta_1 \mathsf{Transport} \ \mathsf{costs}_{i,j} + \Gamma \mathsf{Empire} \ \mathsf{dummies}_{i,j} + \\ \Phi \mathsf{Town}_i + \Psi \mathsf{Town}_j + \Theta \mathsf{Controls}_{i,j} + \epsilon_{i,j} \end{split}$$

- Controls include (1) agricultural suitability (2) geophysical attributes (elevation, latitude, longitude, malaria prevalence, rainfall, temperature, soil quality, including correlations of rainfall and temperature as well as absolute differences) (3) data attributes (first year of correlation, last year of correlation, number of years)

Reminder: states and prices

The impact of precolonial states: millet

(Intercept)	1.006***	1.377***	1.445***	1.431***	12.041
	(0.136)	(0.205)	(0.209)	(0.299)	(34.900)
TC(i,j)	-0.07***	-0.10***	-0.11***	-0.04	-0.04+
	(0.017)	(0.018)	(0.019)	(0.027)	(0.020)
Umarian	0.037	0.180***	0.178***	0.231***	0.146***
	(0.059)	(0.051)	(0.051)	(0.050)	(0.041)
Sokoto	0.048	0.093	0.109	0.058	0.019
	(0.173)	(0.131)	(0.131)	(0.127)	(0.104)
Wassoulou	-0.259	0.476*	0.417+	0.383+	-0.063
	(0.299)	(0.220)	(0.221)	(0.208)	(0.171)
Num.Obs.	Š86	586	586	586	586
R2	0.044	0.598	0.611	0.669	0.627

The impact of precolonial states: rice

(Intercept)	0.697***	1.579***	1.524***	0.759**	-72.975
	(0.125)	(0.148)	(0.244)	(0.282)	(61.387)
TC(i,j)	-0.02	-0.10***	-0.10***	0.07	-0.00
, ,	(0.015)	(0.014)	(0.017)	(0.022)	(0.018)
Umarian	0.225***	0.022	0.021	0.104*	0.120**
	(0.034)	(0.046)	(0.046)	(0.046)	(0.041)
Sokoto	-0.080	0.719***	0.706***	0.610***	0.304**
	(0.152)	(0.126)	(0.127)	(0.125)	(0.112)
Wassoulou	0.262***	0.049	0.055	0.000	0.018
	(0.015)	(0.126)	(0.127)	(0.124)	(0.111)
Num. Obs.	902	902	902	902	902
R2	0.032	0.627	0.634	0.665	0.574

The impact of precolonial states: salt

(Intercept)	0.62***	1.10***	1.09**	1.13**	-134.9
	(0.15)	(0.21)	(0.348)	(0.42)	(88.88)
TC(i,j)	-0.1**	-0.1***	-0.1***	-0.1**	-0.1***
(),	(0.02)	(0.02)	(0.02)	(0.03)	(0.02)
Umarian	0.132*	0.079	0.066	0.075	0.055
	(0.064)	(0.065)	(0.065)	(0.068)	(0.047)
Sokoto	0.111	0.051	0.092	0.088	0.073
	(0.282)	(0.180)	(0.181)	(0.185)	(0.128)
Wassoulou	-0.023	-0.102	-0.094	-0.072	-0.192
	(0.131)	(0.180)	(0.181)	(0.183)	(0.127)
Num.Obs.	904	904	904	904	904
R2	0.028	0.388	0.403	0.413	0.341
<u> </u>	0.026	0.300	0.403	0.415	0.541